Как сделать пусковой конденсатор своими руками

Как сделать пусковой конденсатор своими руками

Как сделать пусковой конденсатор своими руками

Яркий LED–фонарь, способный работать в трёх режимах. Для того, чтобы включить освещение и менять режимы работы следует нажать на кнопку на фронтальной панели;

ATOM 1750. Запуск автомобиля от суперконденсаторов

Группа компаний AURORA с гордостью представляет конденсаторное пусковое устройство нового поколения AURORA ATOM 1750.

Небольшая историческая справка:

Как только человек придумал самодвижущуюся тележку на паровом двигателе (1768г.), а позже (1886) усовершенствовал мотор до ДВС – у водителя появилась задача не только направлять лошадиные силы в нужную сторону, но и запускать их в работу. Проблема пуска двигателя в разные времена решалась по-разному. Для парового мотора достаточно было развести огонь под котлом, бензиновые двигатели требовали мышечной силы или химического источника тока. С появлением аккумуляторов возникла необходимость обслуживания и контроля заряда стартерных батарей, особенно в зимний период. Часто, в помощь штатному АКБ, автовладельцу приходилось использовать внешний источник тока: сетевое пусковое устройство, запасной свинцово-кислотный АКБ, или новинку последних лет компактные пусковые устройства на базе Литий-Полимеров. Главная проблема химических источников тока – саморазряд и старение. Срок службы классического свинцово-кислотного аккумулятора со свободным электролитом составляет около 3х лет. Гелевые и AGM аккумуляторы «живут» дольше, однако и они не вечны. Даже если АКБ бездействует – в нём происходят химические процессы, которые приводят к постепенной потере ёмкости батареи. Это замечание верно и для пусковых устройств на основе аккумуляторов, например, средний срок службы Li-Po пускача составляет 3-5 лет, за это время токопроводный гель которым наполнены аккумуляторы твердеет и постепенно теряет свои свойства. Инженеры- конструкторы давно ищут источник тока который мог бы заменить аккумуляторы и избавить автовладельцев от «слабых мест» АКБ.


Речь в данной статье пойдёт о конденсаторах. Точнее о супер-конденсаторах или ионисторах, способных отдавать огромные токи и обладающих рядом преимуществ в сравнении с аккумуляторами. Как заменить АКБ машины на сборку из конденсаторов, конструкторы ещё не придумали, однако инженерам из Carku удалось создать устройство способное помочь в запуске двигателя автомобиля, тот самый ATOM 1750.Главное отличие данного аппарата от аккумуляторных аналогов – вечный срок службы! Если говорить о пусковых устройствах на базе Литий-полимерных или Свинцово-кислотных батарей, то продолжительность их работы ограничена одной-тремя тысячами циклов заряд/разряд. Конденсаторные пускачи обеспечивают до миллиона циклов. Для того, чтобы представить масштаб предположим, что Вы используете ATOM 1750 дважды в день в течение календарного года. Ресурса прибора при такой интенсивности работы хватит (1.000.000 : (365х2))= 1млн. : 730= 1369 лет.Вторая особенность – неприхотливость ионисторов. Для хранения конденсаторных пусковых устройств не нужны особые условия: вы можете положить аппарат в бардачок или под сиденье авто, и вспомнить о нём, только когда аккумулятору машины понадобится помощь. Аппарат – идеальный вариант для забывчивых водителей. Если следить за уровнем заряда батареи нет ни времени ни желания – аппарат можно спокойно хранить в машине в самые лютые холода или в жару.

Третий плюс – наличие встроенного литиевого аккумулятора. Запас энергии, который хранится в полностью заряженной Li-Ion батарее аппарата ёмкостью 6000mAh – сможет зарядить конденсаторы устройства для более чем 6 пусков подряд. Батарея не участвует в пуске, и предназначена только для зарядки конденсаторов. Вот здесь и кроется та самая ложка дёгтя: любой аккумулятор боится глубокого разряда. Если батарею на долгое время оставить без зарядки – АКБ, рано или поздно, выйдет из строя. Саморазряд, свойственный в той или иной мере любому аккумулятору добьёт разряженную батарею. Напоминаем, что профилактическую зарядку неиспользуемой литиевой батареи необходимо проводить 1 раз в пол-года.

Высокие и низкие температуры хранения ускоряют процессы саморазряда и деградации АКБ. Температурный режим хранения встроенного аккумулятора рекомендованный производителем составляет от 0 до +25С. Впрочем, даже если штатная батарея устройства выйдет из стоя конденсаторы АТОМ 1750 – запитанные от разряженного автомобильного АКБ всё равно смогут запустить двигатель машины.Плюс номер четыре. Возможность зарядки ионисторов прибора от разряженной АКБ машины. Для пуска двигателя достаточно подключить крокодилы аппарата к клеммам «уставшего» АКБ и уже через 45-60 сек. – автомобиль будет готов к старту.

Более подробно про особенности АТОМ 1750:

Аппарат представляет собой профессиональный джамп-стартер. В отличие от Li-Po аналогов, пуск двигателя производится не за счёт энергии запасённой в аккумуляторе, а при помощи мощных ультраконденсаторов. Мощности пускача достаточно для запуска бензиновых двигателей объёмом до и для работы с дизельными моторами до .

Сборка из пяти ионисторов ёмкостью 350F каждый, выдаёт пусковые токи до 350А , что говорит о широком диапазоне применения данного устройства.

Высокий стартовый ток АТОМ 1750 подкреплён стабильным напряжением, которое выдают конденсаторы. Аппарат обеспечивает заявленный ток на протяжении 3х секунд, что является одним из важнейших условий запуска двигателя.

МОБИЛЬНОСТЬ

Вес пускача составляет 1.3 кг. Для сравнения, схожий по возможностям свинцово-кислотный бустер весит более 6 кг (DRIVE 900), а разница в габаритах впечатляет ещё больше.

На боковых гранях АТОМ 1750 расположены: Яркий LED–фонарь, способный работать в трёх режимах. Для того, чтобы включить освещение и менять режимы работы следует нажать на кнопку на фронтальной панели;

USB вход (5В, 2А), для зарядки от сети, Power Bank или другого источника;

На передней панели расположен:Дисплей (1) для отображения рабочих параметров, кнопка «Boost» (2) для заряда ионисторов от встроенного аккумулятора, кнопки включения фонаря и питания устройства (3).

ЗАЩИТА

В качестве силовых кабелей на аппарате используются медные провода сечением 6мм2, длинной 300 мм.

Интеллектуальный блок, не только защищает пусковое устройство от переполюсовки, короткого замыкания и обратных токов генератора, но и позволяет за несколько минут продиагностировать АКБ машины и вывести результаты проверки на табло.

АТОМ 1750 — подскажет владельцу, что аккумулятор машины нуждается в зарядке, либо, что АКБ – пора заменить на новый.

Если при подключении к аккумулятору машины на экране появляется надпись JUMP START READY – цепь работает в штатном режиме. Можно приступать к пуску двигателя.Надпись «REVERSED» сообщает о неправильном подключении крокодилов. Следует проверить полярность – красный зажим должен быть соединён с плюсовым контактом АКБ, чёрный с минусовым.

ЗАРЯДКА

Обратите внимание, при подключении АТОМ к источнику тока, сначала заряжаются ультраконденсаторы, затем, начинается зарядка встроенной батареи устройства.

Представим себе ситуацию, когда вокруг никого а запустить двигатель у штатного АКБ машины – не получается.

Первый способ запуска машины с помощью АТОМ 1750 – заключается в зарядке конденсаторов непосредственно от клемм разряженного АКБ автомобиля. После подключения аппарата дожидаемся появления надписи JUMP START READY и запускаем двигатель не снимая крокодилы с клемм. Время зарядки конденсаторов зависит от уровня разряда АКБ и составляет от 45 сек до 2.5мин.

Второй способ зарядки – через гнездо прикуривателя. Атом 1750 можно подключить к бортовой сети с помощью специального переходника из комплекта. Время зарядки около 2 минут.

Третий источник энергии – встроенная батарея прибора. После нажатия на кнопку Boost – аппарат использует энергию запасённую в Литиевом аккумуляторе. Время зарядки – 2-3мин.

Ну и последний вариант зарядки, если под рукой нет иных источников, — придётся искать розетку. С помощью блока питания от мобильной электроники (5V, 2А) – конденсаторы можно зарядить и от сети.

Ещё один Важный момент. Заряжать Атом 1750 можно не только от собственного разряженного АКБ, но и от ЛЮБОГО автомобиля-донора (большая и маленькая машины – показать). В отличие от «прикуривания» — операция зарядки ионисторов АТОМ 1750 — абсолютно безопасна, и не требует соблюдения никаких условностей, кроме полярности подключения.

ПУСК АВТОМОБИЛЯ

Для того, чтобы приступить к использованию Джамп-стартера хозяину машины следует убедиться, что зажигание автомобиля выключено. При подключении — следует соблюдать полярность: красный кабель устройства соединяется с плюсовой клеммой аккумулятора автомобиля, чёрный с минусовой клеммой.После подключения можно приступать к запуску двигателя. Если в течение 3х секунд мотор не запустился – следует зарядить конденсаторы ещё раз и повторить попытку.После того, как двигатель заработал «крокодилы» с клемм аккумулятора следует снять.ATOM 1750 поставляется в картонной коробке.В комплекте с аппаратом:Шнур для зарядки аппарата от прикуривателя автомобиля;

Напоминаем, что одним из условий продолжительной службы аппарата является своевременная зарядка встроенного аккумулятора устройства, поэтому после каждого пуска с использованием энергии аккумулятора – необходимо отправить АТОМ на зарядку. При длительном хранении рекомендуем заряжать устройство до уровня 80-90% один раз в 6 месяцев. Хранить аппарат следует при плюсовой температуре.

Смотрите данную статью в видео-ролике:

Сигналом к запуску становится магнитное поле двух обмоток, вращающее подвижную часть двигателя. Оно создается 2 обмотками: главной и пусковой. Дополнительная обмотка меньшего размера является пусковой и подключается к основной схеме включения однофазного двигателя через ёмкостное или индуктивное сопротивление.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

После чего готовый электролит наносится на медные круги (на одну из сторон). Обратите внимание, чем толще слой электролита, тем больше емкость ионистра. И еще один момент, толщина наносимого электролита на двух кругах должна быть одинаковая. Итак, электроды готовы, теперь их надо разграничить материалом, который бы пропускал электрический ток, но не пропускал угольный порошок. Для этого используется обычная вата, хотя вариантов и здесь немало. Толщина ватного слоя определяет диаметр металлической баночки от кофе, то есть, вся эта электродная конструкция должна в нее спокойно поместиться. Отсюда, в принципе, и придется подбирать размеры самих электродов (медных кругов).

Собираем ионистр своими руками

Сборка ионистра своими руками – дело не самое простое, но в домашних условиях его сделать все же можно. Есть несколько конструкций, где присутствуют разные материалы. Предлагаем одну из них. Для этого вам понадобится:
  • металлическая баночка от кофе (50 г);
  • активированный уголь, который продается в аптеках, его можно заменить истолченными угольными электродами;
  • два круга из медной пластины;
  • вата.
В первую очередь необходимо приготовить электролит. Для этого сначала надо истолочь активированный уголь в порошок. Затем сделать солевой раствор, для чего в 100 г воды надо добавить 25 г соли, и все это хорошо перемешать. Далее, в раствор постепенно добавляется порошок активированного угля. Его количество определяет консистенция электролита, она должна быть плотностью, как замазка.

После чего готовый электролит наносится на медные круги (на одну из сторон). Обратите внимание, чем толще слой электролита, тем больше емкость ионистра. И еще один момент, толщина наносимого электролита на двух кругах должна быть одинаковая. Итак, электроды готовы, теперь их надо разграничить материалом, который бы пропускал электрический ток, но не пропускал угольный порошок. Для этого используется обычная вата, хотя вариантов и здесь немало. Толщина ватного слоя определяет диаметр металлической баночки от кофе, то есть, вся эта электродная конструкция должна в нее спокойно поместиться. Отсюда, в принципе, и придется подбирать размеры самих электродов (медных кругов).

Остается только сами электроды подключить к выводам. Все, ионистр, изготовленный своими руками, да еще в домашних условиях, готов. У такой конструкции не очень большая емкость – не выше 0,3 фарад, да и напряжение зарядки всего лишь один вольт, но это самый настоящий ионистр.

Резистор — его задача ограничивать ток. Это статичный элемент, чье сопротивление не меняется, про тепловые погрешности сейчас не говорим — они не слишком велики. Ток через резистор определяется законом ома — I=U/R

Электрические характеристики электролитических конденсаторов

Обозначение конденсаторов на схемеТак как в них воздушный диэлектрик заменён на электролит, то его состав и качество влияют на свойства двухполюсника.К главным параметрам электролитической детали относятся следующие характеристики:
  • ёмкость – С;
  • разрешённые отклонения от номинального значения С;
  • величина реактивного сопротивления.
Сюда же можно приплюсовать конструктивные особенности (размеры и способы крепления).
Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.

Назначение и подключение пусковых конденсаторов для электродвигателей

Для обеспечения надежной работы электродвигателя используются пусковые конденсаторы.Наибольшая нагрузка на электродвигатель действует на момент его старта. Именно в этой ситуации пусковой конденсатор начинает работать. Также отметим, что во многих ситуациях пуск проводится под нагрузку. В этом случае, нагрузка на обмотки и другие компоненты очень велика. Какая же конструкция позволяет снизить нагрузку?Все конденсаторы, в том числе и пусковые, имеют следующие особенности:

  1. В качестве диэлектрика используется специальный материал. В рассматриваемом случае, часто используется оксидная пленка, которую наносят на один из электродов.
  2. Большая емкость при малых габаритных размерах – особенность полярных накопителей.
  3. Неполярные имеют большую стоимость и размеры, но они могут использоваться без учета полярности в цепи.
Подобная конструкция представляет собой сочетание 2 проводников, которые разделяет диэлектрик. Применение современных материалов позволяет значительно повысить показатель емкости и уменьшить его габаритные размеры, а также повысить его надежность. Многие при внушительных рабочих показателях имеют размеры не более 50 миллиметров.

Назначение и преимущества

Используются конденсаторы рассматриваемого типа в системе подключения асинхронного двигателя. В данном случае, он работает только на момент пуска, до набора рабочей скорости.Наличие подобного элемента в системе определяет следующее:
  1. Пусковая емкость позволяет приблизить состояние электрического поля к круговому.
  2. Проводится значительное повышение показателя магнитного потока.
  3. Повышается пусковой момент, значительно улучшается работа двигателя.
Без наличия этого элемента в системе, срок службы двигателя значительно уменьшается. Это связано с тем, что сложный пуск приводит к определенным сложностям.Сеть переменного тока может служить источником питания в случае с использованием рассматриваемого типа конденсатора. Практически все используемые варианты исполнения неполярные, они имеют сравнительно больше для оксидных конденсаторов рабочее напряжение.Преимущества сети, которая имеет подобный элемент, заключаются в следующем:
  1. Более простой пуск двигателя.
  2. Срок службы двигателя значительно больше.
Пусковой конденсатор работает на протяжении нескольких секунд на момент старта двигателя.

Схемы подключения

схема подключения электродвигателя с пусковым конденсаторомБольшее распространение получила схема, которая имеет в сети пусковой конденсатор.Данная схема имеет определенные нюансы:
  1. Пусковая обмоткаи конденсатор включаются на момент старта двигателя.
  2. Дополнительная обмотка работает небольшое время.
  3. Термореле включается в цепь для защиты от перегрева дополнительной обмотки.
При необходимости обеспечения высокого момента во время пуска, в цепь включается пусковой конденсатор, который подключается вместе с рабочим. Стоит отметить, что довольно часто его емкость определяется опытным путем для достижения наибольшего пускового момента. При этом, согласно проведенным измерениям, величина его емкости должна быть в 2-3 раза больше.К основным моментам создания цепи питания электродвигателя, можно отнести следующее:
  1. От источника тока, 1 ветка идет на рабочий конденсатор. Он работает на протяжении всего времени, поэтому и получил подобное название.
  2. Перед ним есть разветвление, которое идет на выключатель. Кроме выключателя может использоваться и другой элемент, который проводит пуск двигателя.
  3. После выключателя устанавливается пусковой конденсатор. Он срабатывает в течение нескольких секунд, пока ротор не наберет обороты.
  4. Оба конденсатора идут к двигателю.
Подобным образом можно провести подключение однофазного электродвигателя.Стоит отметить, что рабочий конденсатор присутствует в цепи практически постоянно. Поэтому стоит помнить о том, что они должны быть подключены параллельно.

Выбор пускового конденсатора для электродвигателя

Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.Для проведения расчета следует знать и ввести нижеприведенные показатели:
  1. Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
  2. Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
  3. Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
  4. Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
  5. КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.
Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.Провести подобный расчет можно самостоятельно.Для этого можно воспользоваться следующими формулами:
  1. Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
  2. Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
  3. После вычисления тока можно найти показатель емкости рабочего конденсатора.
  4. Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.
При выборе, стоит также учесть нижеприведенные нюансы:
  1. Интервал рабочей температуры.
  2. Возможное отклонение от расчетной емкости.
  3. Сопротивление изоляции.
  4. Тангенс угла потерь.
Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:
  1. Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
  2. Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.
Кроме этого, стоит учитывать, что на рынке можно встретить модели от иностранных и отечественных производителей. Как правило, зарубежные имеют большую стоимость, но и надежнее. Российские варианты исполнения также часто используются при создании сети подключения электродвигателя.

Обзор моделей

Существует несколько популярных моделей, которые можно встретить в продаже.Стоит отметить, что эти модели отличаются не по емкости, а по виду конструкции:
  1. Металлизированные полипропиленовые варианты исполнения марки СВВ-60. Стоимость подобного варианта исполнения около 300 рублей.
  2. Пленочные марки НТС стоят несколько дешевле. При одинаковой емкости, стоимость составляет около 200 рублей.
  3. Э92 – продукция отечественных производителей. Их стоимость небольшая – порядком 120-150 рублей при той же емкости.
Существуют и другие модели, зачастую они отличаются типом используемого диэлектрика и видом изоляционного материала.

Советы

  1. Зачастую, работа электродвигателя может происходить без включения в цепь пускового конденсатора.
  2. Включать этот элемент в цепь рекомендуется только в том случае, если производится пуск под нагрузку.
  • Также, большая мощность двигателя также требует наличие подобного элементам в цепи.
  • Особое внимание стоит уделить процедуре подключения, так как нарушение целостности конструкции приведет к ее неисправности.
  • Обсуждение закрыто.